
Pertanika J. Sci. & Technol. 27 (1): 159 - 174 (2019)

ISSN: 0128-7680
e-ISSN: 2231-8526

SCIENCE & TECHNOLOGY
Journal homepage: http://www.pertanika.upm.edu.my/

Article history:
Received: 30 September 2017
Accepted: 28 August 2018
Published: 24 January 2019

ARTICLE INFO

E-mail addresses:
niharika.academics@gmail.com (Niharika Singh)
ashutosh@nitkkr.ac.in (Ashutosh Kumar Singh)
* Corresponding author

© Universiti Putra Malaysia Press

SQL-Injection Vulnerabilities Resolving using Valid Security Tool in Cloud

Niharika Singh1* and Ashutosh Kumar Singh2

1Department of Computer Engineering, National Institute of Technology Kurukshetra, Haryana, 136118 India
2Department of Computer Applications, National Institute of Technology Kurukshetra, Haryana, 136118 India

ABSTRACT

The cloud is storing a huge amount of the data, including personal and confidential
details. It involves the third party over the internet and proposes many unreliable strings
which can be proven as loopholes. Thus, securing the data in the cloud tends to be a
major point of concern. SQL Injection Attacks (SQLIAs) are being acknowledged as
one of the foremost web applications security threats. It initiates a vulnerable query to
destroy the connected server systems and help attackers with unauthorized access to the
databases resulting in identity theft and security violations. The paper proposes a hybrid
solution whose information utility is higher than the solutions that are being proposed
earlier. As the methodology is concerned over static, dynamic and runtime detection and
prevention mechanism. It also classifies the malicious queries and inspires the system to
be well prepared for the secure working environment by implementing a demonstration
design. Through the experimental implementation, the query associativity makes success
probability of 0.775 using the associativity formula that in fraction, results in a durable
comparative solution proposed till date.

Keywords: Cloud security, malicious nodes, SQL injection attack

INTRODUCTION

During the last decade, cloud computing
and big data have appeared as two emerging
technologies. These technologies have
become one of the fieriest topics of recent
times in the IT industry that made large
steps in a relatively very short period of
time. The methodology groundwork of
cloud computing includes virtualizations
and Service Oriented Architecture (SOA) of
hardware and software. One mainstream of

Niharika Singh and Ashutosh Kumar Singh

160 Pertanika J. Sci. & Technol. 27 (1): 159 - 174 (2019)

resource sharing promotes various cloud assistances (such as software cloud, application
cloud, infrastructure cloud, business cloud, storage cloud). These offer various services for
different domains (Casassa-Mont, et al., 2015). Involving the third party over the internet
proposes many unreliable strings as loopholes (Swanson & Stinson, 2015). The cloud is
storing a huge amount of data including personal and confidential details. Thus, securing the
data in the cloud tends to be a major concern. On applying and detecting suitable methods
for providing the privacy check to the insecure uncertainties itself is a major challenge of
the cloud computing (Plischkea et al., 2013).

Web servers which provide customer services are usually connected to highly-sensitive
information contained backend databases. Sometimes, these backend databases are
vulnerable to the harmful attacks, such as SQL Injection Attacks (SQLIAs). SQLIA are
one of the foremost security threats to web services and applications (Eyal, Birman, & van
Renesse, 2015). It initiates a vulnerable query to destroy the connected server systems and
gives attackers unauthorized access to databases. It provides right to delete, modify and
retrieve valuable and confidential information stored in databases. This results in identity
theft and security violations (Dharam & Shiva, 2013). SQLIAs come in the picture when
the data provided by the external users are directly included in SQL query but are not
properly validated. According to a study, it was stated that 75% of the cyber-attacks are
outperformed at the application layer. Also, over the audited websites where 97% of them
are clearly targeted (Eyal et al., 2015; Narayanan et al., 2011; Plischkea et al., 2013). Thus,
for the SQLIAs an inadequate input validation has been identified as one of the major
causes within a web application. For the first level of defense against SQLIAs, these input
validations can serve satisfactorily, but it may not be much defence against injecting SQL
queries attack techniques.

Figure 1. Representation of how attacker initiates SQL Injection Attack

A variety of tools are introduced as a solution for SQLIAs keyword based filtering,
machine learning and decision trees. These solutions for the firewalls and Intrusion
Detection Systems (IDSs) are ineffective against SQLIAs because some ports are open
in firewalls for the regular web traffic at the application level that are used to perform
SQLIAs. Thus, if attackers get breakthrough (Kiani et al., 2008) as shown in Figure 1 and
find loopholes to attack, it will result in damaging the firewall and IDS.

Prevention and Detection from SQL Injection Attacks

161Pertanika J. Sci. & Technol. 27 (1): 159 - 174 (2019)

The paper considers the SQL injection attack, which is its own kind of code injection
attack. Though, the SQLIA is very common, there must be some privacy measures to protect
our databases from SQL Injection Attacks. Day by day, our databases are getting modular,
so is the Injection attacks, but proportionally. Thus, SQLIA is a considerable concern in
the real world. Hence, research on this problem bears significant practical importance. In
concern, we have developed the detection and prevention method that tries to achieve the
high Information Utility Rate (IUR) using the query associativity and tautology logics.
Where, ‘A tautology is a statement that is always True regardless of the truth values of the
individual statements’. This is considered as the base idea for the proposed approach and
is processed with “query associativity”. The methodology is dogged over static, dynamic
and runtime detection and prevention mechanism. This also filters out the malicious queries
and inspires the system to be well prepared for the secure working environment (Ping et
al., 2016; Halfond & Orso, 2005; Narayanan et al., 2011).

Related Work

Today, for web applications SQL injection attacks are counted among the top-most threats.
These attacks are launched through the specially crafted user inputs over web applications
which uses low-level string operations in order to construct SQL queries. A research study
can be outperformed on the basis of the work previously done in the subsequent manner.

A model-based tool AMNESIA was proposed by Halfond and colleague (2005) to
detect illegal queries (before the execution on the database). This includes detection on
both static as well as dynamic injected query attacks. In the static part, to automatically
build a model of legitimate queries the technique uses program analysis. On the other hand,
dynamic part runtime monitoring is used to inspect the dynamically generated queries
(Narayanan et al., 2011; Halfond & Orso, 2005). Bandhakavi, Bisht, Madhusudan, &
Venkatakrishnan (2007) introduced another model CANDID that detects SQL injection
to dynamically mine programmer-intended query structure on any input and compare it
against the structure of actual query issued. The approach is based upon inferring intended
queries considering symbolic query computed on a program run. A new detecting method
was proposed based on single character to detect parsing and black list based attacks which
are experimentally defined by using both attacks and normal samples (Sonoda, Matsuda,
Koizumi, & Hirasawa, 2011) in different types of SQLIAs that are extensively reviewed till
date. It analyzes various recently developed defensive mechanisms also shows how each
technique might help in preventing and detecting all SQLIA types. It introduces PSIAQOP
(Preventing SQL Injection Attacks based on Query Optimization Process) depending on
heuristic rules to prevent all SQLIAs types (Al-Khashab, Al-Anzi, & Salman, 2011). In
order to overcome the weakness a detection method is proposed that uses machine learning
and probabilistic study. It gives the formula to calculate parameter of the zeta distribution.

Niharika Singh and Ashutosh Kumar Singh

162 Pertanika J. Sci. & Technol. 27 (1): 159 - 174 (2019)

The model proposes an SQL injection attack detection methodology using the proposed
formula (Oosawa & Matsuda, 2014).

Some other well-known interrelated web application vulnerabilities of SQL attacks are
Cross-Site Scripting (XSS) and Cross-Site Request Forgery (CSRF). By getting inspired to
detect such vulnerable queries a method was proposed which detects and recognize SQL
injection that are based on defined and identified criteria. The model is able to generate
report regarding the vulnerability level and decrement in possibility of SQL injection
attack onto the web application (Buja et al., 2014). To detect dynamic injected queries a
new approach was suggested that detect and prevents SQL injection attacks on checking
whether user inputs cause changes in query intended results. Attacker if uses space, single
quotes or double dashes in input the proposed method detects and tokenizes the query and a
query with injection separately. When tokens are formed, it stores onto an array representing
every token as an element of an array. Two arrays are resulted from both queries (original
and injected) then the length is compared to detect if it is injected or not. Further the access
is granted or denied on the basis of comparison (Ntagwabira & Kang, 2010). Ping et al.,
(2016) proposed a method of preventing SQL injection attacks by ISR (Instruction Set
Randomization), and built a prototype system based on this strategy. The prototype system
randomizes the SQL keywords in the application, because the SQL statement injected
by the attacker is not randomized, so the SQL injection can be easily detected. Also, the
experimental results show that this system has a good effect on preventing SQL injection
and low running cost. Similarly, Yassin et al. (2017) proposed the detection solution for
Software as a Service (SaaS) providers. To achieve SQL query/HTTP request mapping,
they planned an event-correlation based on the similarity between literals in SQL queries
and parameters in HTTP requests. Many researchers worked in the field, but still an
appropriate satisfactory solution was not found which could be announced as best to defeat
the SQL injection attacks including (Yassin et al., 2017; Uwagbole et al., 2017). Hence,
the comparison summary of work done in SQLIA solution techniques is shown in Table 1.

Problem Statement

The main objective of the research is connected to Table-1 where, we focus to get better
information utility rate. It is said that ‘the higher the Information Utility Rate, the higher
will be the Privacy’ but, this decreases the data accessibility. This limitation of higher IUR
leads to examine models to get a “balance between Data accessibility, Data Privacy and Data
Utility”. Hence, our objective is based upon getting a Moderate/High information utility
than the other research solutions. Thus, the results lead to achieve an IUR percentage range
that would lie between 80-90% that is considered to be a balanced range in all technical
aspects. In association, we proposed a hybrid solution working to get high information
utility than the other research solutions. The solution works over Prevention and Detection

Prevention and Detection from SQL Injection Attacks

163Pertanika J. Sci. & Technol. 27 (1): 159 - 174 (2019)

Ta
bl

e
1

Su
m

m
ar

iz
ed

 V
ie

w
 o

f S
ta

te
-o

f-a
rt

 w
or

k
do

ne
 in

 S
Q

LI
A

so
lu

tio
n

te
ch

ni
qu

es

In
fo

rm
at

io
n

ut
ili

ty
Pr

iv
ac

y
ac

ce
ss

A
pp

ro
ac

h
A

dv
an

ta
ge

D
is

ad
va

nt
ag

e
C

om
pl

ex
ity

H
ig

h
Pa

tte
rn

 m
at

ch
in

g
ba

se
d

pr
iv

ac
y

us
in

g
au

th
en

tic
at

ed

da
ta

 st
ru

ct
ur

es

Po
lic

y-
or

ie
nt

ed
 o

ve
r l

ow

pr
iv

ac
y

st
re

ng
th

R
ed

uc
tio

n
in

 c
om

m
un

ic
at

io
n

ov
er

he
ad

 p
ro

vi
di

ng
 e

as
e

du
rin

g
th

e
im

pl
em

en
ta

tio
n

an
d

co
m

pu
ta

tio
ns

.

La
ck

s i
n

di
ve

rs
ity

.
Lo

w

Lo
w

Pr
ev

en
tio

n
th

ro
ug

h
pa

rs
in

g
an

d
tri

gg
er

in
g

qu
er

ie
s f

or

pr
iv

ac
y

po
lic

y
w

ith
 d

efi
ne

d
da

ta
 a

cc
es

si
bi

lit
y

le
ve

l

Q
ue

ry
 o

pt
im

iz
at

io
n

ov
er

st

ro
ng

 p
riv

ac
y

st
re

ng
th

s
Pr

ov
id

in
g

a
re

co
rd

-le
ve

l
SQ

LI
A

s p
ro

te
ct

io
n

to

pr
ev

en
t e

ve
s-

dr
op

pi
ng

ac

ro
ss

 m
ul

tip
le

 d
at

a
en

vi
ro

nm
en

t.

C
om

pa
ris

on
 re

su
lts

 a
re

 le
ss

sa

tis
fa

ct
or

y.
H

ig
h

M
od

er
at

e
Fi

lte
re

d
an

d
lin

ka
bl

e
da

ta

pr
iv

ac
y

w
ith

 sp
ec

ifi
c

da
ta

ac

ce
ss

ib
ili

ty

Li
nk

ab
le

 p
ol

ic
y

w
ith

 li
m

ite
d

in
fo

rm
at

io
n

ac
ce

ss
 u

si
ng

H

eu
ris

tic
 ru

le
s a

nd
 o

ut
pu

t
fil

te
rin

g

Pr
ov

id
es

 re
qu

ire
d

m
al

ic
io

us

an
d

be
ni

gn
 U

R
Ls

 fo
r t

hr
ee

ph

as
es

 o
f t

es
tin

g,
 v

al
id

at
in

g,

an
d

tra
in

in
g.

 A
dd

re
ss

es

is
su

es
 o

f p
ol

ic
y

an
om

al
ie

s
m

ec
ha

ni
sm

s,
al

so
 re

du
ce

s
ov

er
he

ad
 c

om
pu

ta
tio

n.

V
ul

ne
ra

bl
e

to
 u

na
ut

ho
riz

ed

ac
ce

ss
 a

s o
nl

y
de

te
ct

io
n

m
et

ho
d

is
 in

tro
du

ce
d

H
ig

h

Niharika Singh and Ashutosh Kumar Singh

164 Pertanika J. Sci. & Technol. 27 (1): 159 - 174 (2019)

to improve firewall security. The other researchers encountered various solutions to get
approximate results for a secure SQLIA free environment. Early experiments have a
success score range of 50-70% (Plischkea et al., 2013; Eyal et al., 2015; Narayanan et al.,
2011). The proposed logics were categorized into as either detection method or prevention
methods but the combinations were hardly proposed. Hence, to achieve 100% success rate
solution for SQLIA security is quite difficult. A few researchers have tried to achieve a
satisfying success rate, but is not much convincing due to the quality attributes (Dharam et
al, 2013). Hence, a model is required that would result with 80-90% success rate range of
security bar. Also, a solution that would come up with all proximities and could be analyzed
in proposed methodology. Thus, we strictly compare the work with Casassa-Mont et al.,
(2015) and Ntagwabira & Kang (2010) improving the loopholes using tautology logics.
Therefore, the experimental results are reasonable enough to validate all those claims that
are suggested through the proposed work.

Proposed Solution

Client-Side Attacking Shot. The introduced approach is a three-tier (Client-Logic
Access- Data Server) runtime detection and prevention methodology. It deals with process
organization, accessibility and exchange of queries. It ensures that the Data-Server tier
would not execute any vulnerable code that affects the hosted operating systems and devices
partially or completely. The technique works over the database server side being associated
with a distributed cloud environment. It provides a security controlling system ensuring
secure execution of all the requested queries without any database hacking or fabrication.

Procedure
Receive_Query Unveil_Message
(T:Tier level number)
Begin
Update access_table row T to increase input_count;
End
Procedure
Finish_Query (T: Tier level number)
Begin
Update access_ table row T to increase consumed_count;
End
Procedure Upon_Idle
Begin
Report to controller_server non-zero difference for previously unreported access_table
rows;

End

Prevention and Detection from SQL Injection Attacks

165Pertanika J. Sci. & Technol. 27 (1): 159 - 174 (2019)

This algorithm for tier-architecture detects the completion of the query exchange
process at n-tier level. As the queries Q = {q1, q2, q3 ... qs} go through
a tier architecture representation for T = {t1, t2, t3 ... tn}. For the proposed scenario, it works
over up to n=3 levels. The architecture is dependent upon the three-tier architecture system
which is divided as follows:

First tier (client tier) - This tier consists of applications that are accessed through
a centralized system. Here, it is concerned over web browsers, servers or standalone
application running on different machines that processes queries to request and response
through the central server. If there are S servers that share a communication through Q
queries, the ratio of detecting a breakthrough would be directly proportional to R number
of activities where R = {r1, r2, r3 ... rt}. Now, on the whole the query associativity would be:

 (1)
Here, the R outperforms s number of queries. Thus,

 (2)

 (3)

 (4)
For which if we have i = 1, Q t (5)

The queries when are processed through distributed servers produce results into HTML
web pages. The web pages are uniquely identified with their corresponding url. To find the
associative probability it is further divided by 100 for the overall evaluation.

Second tier (logic access tier) – The layer concerns over the server codes that may
include platform or software applications. These codes process and set up communicational
behavior among local and remote system servers outperforming over network languages.
Thus, the layer is responsible for the following measures: authentication, authorization,
caching, exception management, validation. These measures effectively logs and audit the
progressive Q queries.

Third tier (data server tier) –This layer embraces all the database objects that might
be used by applications (such as schemas, views, tables and stored procedures). It
considers database services over distinct servers. Data server tier stores SQL server object
definitions of available instant-level objects stored in database. The layer tools can be listed
as: Application Developer, Database Administrator, Independent Software Vendor, IT
Administrator, etc. supporting the operations: Extract, Deploy, Register, Unregister,
Upgrade that helps in Export_Import of the request–response queries.

The 3-Tier architecture provides a support to the “Valid security” scheme which helps
reducing SQL vulnerability rate in websites over the client side.

Niharika Singh and Ashutosh Kumar Singh

166 Pertanika J. Sci. & Technol. 27 (1): 159 - 174 (2019)

Security Policy Framework. Malicious SQLIA can be introduced into vulnerable
applications using different input mechanisms. To get rid of such exasperating threats to
the database-driven applications “Valid Security” can be introduced. During the process,
a conditional query statement is fixed over the firewall on the client side it results to be
always True. It bounds the parameters to some defined SQL structure, thereafter, for the
attacker it is not possible to inject additional SQL code.

It is a runtime monitoring and prevention strategy which is more complex than defensive
coding schemes. For the tautology logic encapsulation Proxy Server is introduced between
SQL Server and Web Server. Attacker attacks using the SQL query with randomized value
to proxy server, received by the client. Then, it is accessed through “Valid security” that
stores an activity-access table over the proxy server to de-randomize the query. Further,
it sends the satisfactorily secure and filtered query to the server for the processing then
downloads HTML page or the website content, see Figure 2.

Take an example of spoofed SQL query that contains WHERE clause in it to consider
the query processing as a tautology on the attacker’s end or universally. The two clause
elimination procedures, say V1 and V2 which are recommended to be Valid and Unsatisfiable
respectively, encounters with a vulnerable SQL query Q. Influentially both the procedures
are equally effective. In conjunction, when Q processes through the proxy server, it passes
through either V1 or through V2 that in results of give any false for V1 and any single true
for V2 it would filter out the query and remove the vulnerability attached using some
parameterized queries. There it is followed as Valid constraints are updated on the basis of
the proposed machine learning whereas Unsatisfiability constraints are manually updated.
On passing through it pairs up as if:

Figure 2. Working of proposed Valid Security Tool SQLIA solution

Prevention and Detection from SQL Injection Attacks

167Pertanika J. Sci. & Technol. 27 (1): 159 - 174 (2019)

V1(Q) and V2(Q) (6)

For which we have queries to pass through the filter if V3 is the all formula clause , i.e.

 (7)

But, here V2 would be equally effective only if it satisfies twice over the V1 reordering
in concern to the propositional logic:

 (8)

Where, Q is the SQL query represented in propositional logic. Thus, on the basis it is
easy to remove the vulnerable or malicious queries on the runtime that neutralizes SQL
injection attacks. Here the dynamic part of it inspects dynamically generated queries and
checks them using some predefined rules. For the mapping concern of the inputs and
vulnerabilities machine learning methodology is introduced to generalize the dynamic
generation of the queries. The system learns the query activities with the help of cookies
C that get attached to the browser and stores activity in the Activity-Access table A (with
i number of entries) put away over proxy server. For which it would be satisfiable:

 (9)

When it learns from the frequent access it starts filtering the dynamically injected
queries as well and extracts the user inputs.

Progressive Algorithm

To understand the detailed concept of the solution, a step-to-step process is explained. To
implement the methodology, one needs to go through the main process that initially calls
to setup a PROXY_SERVER then after validation CLOUD_SERVER_HANDSHAKE is
configured. It proceeds to install VALID_SECURITY_TOOL (proposed method installation
over proxy). It includes an ACTIVITY_ACCESS_TABLE putting in place to record all
true and all false activities for corresponding queries in Algorithm 1.

Algorithm-1: Query Access and Denial System for SQL injection attack.
Begin
Initialize Q={q1,q2,q3…qs}
Install and Process VALID_SECURITY_TOOL()
Create ACTIVITY_ACCESS_TABLE()
Initialize matrix arr[i][j] and Set arr[0:i-1][0:j-1];
Apply STORE_CONSTAINT (where, i=MANUALLY_STORE_CONSTRAINT() and
j=MACHINE_LEARNING_CONSTRAINT)

If TRUE → Qs (i,j) Const=1

Niharika Singh and Ashutosh Kumar Singh

168 Pertanika J. Sci. & Technol. 27 (1): 159 - 174 (2019)

Else FALSE → Qs (i,j) Const=0.
Call query Qs () and Break STORE_CONSTRAINT to generate INPUT_QUEUE(Q)
Match INPUT_QUEUE()↔STORE_CONSTRAINT()
If (Match= all TRUE), then (ACCESS_QUERY →ALLOW)
Else if (Match= all FALSE), then

Repeat for TRUE and Match= all TRUE;
Set Access query →ALLOW;

Else (Access query →DENY)
Store access results →ACTIVITY_ACCESS_TABLE()
Report PROXY_SERVER() ABOUT UPDATE
Call THREE_TIER()
Process through CLIENT_TIER() and Calculate QUERY_ASSOCIATIVITY
Access P_i through LOGIC_ACCESS_TIER;
Store content over DATA_SERVER_TIER
Finish Query → Qs () and Set S=s+1
Repeat for Q;
End

RESULTS AND ANALYSIS

Implementation Environment

The proposed architecture demands a powerful and effective justification environment for
which a technical platform has been performed. Performance section is divided into two
phases depicting as setup phase and experimental phase giving a description over hardware
and software components.

System Setup

Initiating over a supercomputer sometimes is a difficult task, but here an archetype is to
be designed for execution of queries and transactions for carrying up over inter and intra-
cloud. Thus, Table 2 shows system configuration scenario instigating technical attributes
like RAM, OS, Hard-disk, etc. required for the implementation of the proposed algorithm.

Experimental Setup

To set up the cloud, there is a need to arrange a client-server picture. It can be configured
as master-slave server maintenance using open source platform. In concern to our proposed
scheme justification we are using a latest configured machine which may satisfy the data
owner, needs for preserving the sensitiveness following the Valid Security Tool whose
configuration is defined in Table 3. For the further proceeding and understanding Table 4 is
designed with the detailed description for experimental technical configurations, including
the cluster server worked over different ports.

Prevention and Detection from SQL Injection Attacks

169Pertanika J. Sci. & Technol. 27 (1): 159 - 174 (2019)

Table 2
Technical details of implementation environment

Setup phase Technical attributes Configuration

System setup
(minimum
requirements)

RAM Capacity 8 GB

Processor Intel(R) Core(TM) i7 CPU Q 740 @ 1.73GHz 1.73GHz
Turbo up to 1.93 GHz

Operating system Windows 7 ultimate
Hard-disk 1 TB
Graphic card (if required) NVIDIA GeForce GT 425M-2GB

Table 3
Experimental technical configuration details of implementation setup phase

Setup phase Technical attributes Configuration

Experimental Setup

Query size 30
Valid Constraints (dynamic) 15 initially
Unsatisfiable Constraints (static) 15 initially
Target number of Nodes 3
Database MySQL
Platform Open Jave Development Kit JVM
Infrastructure Open Source Server-Oriented

Table 4
Server oriented details

Setup phase Source Server type Configuration

Validation Setup

Server-1
(Client)

Master Server WAMP SERVER, Open Source Platform
Apache Server 80 PORT
MySQL Server 3306 PORT
Proxy Server 8080 PORT

Server-2
(Attacker)

Master Server WAMP SERVER, Open Source Platform
Apache Server 8081 and 8180 PORT
MySQL Server 3309 PORT

Server-3
(Cloud Node-1)

Slave Server XAMPP SERVER-1, Open Source
Apache Server 9090 and 443 PORT
MySQL Server 3307 PORT
Language Python

Server-4
(Cloud Node-2)

Slave Server XAMPP SERVER-2, Open Source
Apache Server 8080 and 8181 PORT
MySQL Server 3308 PORT
Language Python

Niharika Singh and Ashutosh Kumar Singh

170 Pertanika J. Sci. & Technol. 27 (1): 159 - 174 (2019)

Evaluation Scenario

Here, in this section our scheme is analyzed on the basis of the experimental computation
and performance. We are evaluating some thorough perceptible results to justify the
formulation with examples. We first assess the computation and communication overhead,
and further give the details about the data spoofing through SQLIAs.

Figure 3. Minimum value calculated when i no Valid and Unsatisfiable query runs over

Figure 4. Maximum value calculated when i no. of Valid and Unsatisfiable query runs over

For the performance validation of the Valid Security tool set of thirty queries has
been analyzed that includes original and injected queries. Taking two queries initially,
i.e. n=2, including WHERE clause results in Figure 3 and Figure 4 that shows Validity
and Unsatisfiability values. The Figures 3 and 4 show the minimum and maximum time

Prevention and Detection from SQL Injection Attacks

171Pertanika J. Sci. & Technol. 27 (1): 159 - 174 (2019)

gaps, respectively, taken when run for about thirty (30) times, respectively. The lines are
contracted somewhere with small gaps, but in some cases, it is wide which is all due to
the learning process installed over ACCESS_ACTIVITY_TABLE.

On processing n=30 the results are shown in Figure 5. It depicts that it makes viable
negotiated inferences during the time stamping, when these queries are analyzed in a
queue. Minimum difference evaluated is measured to have 0.00003 seconds. In fraction,
it is a very small difference when is outperformed on a single machine to get the utility.
Calculating the query associativity makes success probability of 0.775 (from Equation 1-5)
using the associativity formula. Here, we find the Information Utility Rate (IUR) in terms
of probability and resulted in 0.775. This indicates the percentage of proposed approach
in comparison to other proposed models to get 80-90% success rate range of security bar.
This IUR rate is comparatively higher than references considered in related work. Also, to
our competitive models i.e. Casassa-Mont et al., (2015) and Ntagwabira and Kang (2010).
Where, Casassa-Mont and colleagues in 2015 attained 0.74 IUR and Ntagwabira and Kang
(2010) achieved 0.65. We have considered one classic and one latest model for comparison.
Figures 5 and 6 are comparative analysis in comparison to model proposed by Casassa
et al., (2015), and Ntagwabira and Kang (2010). The work presented in these models are
implemented in same platform. Thus, experimental results provide average negotiation
comparison and query cycle satisfiability and un-satisfiability rate, see figure 5 and 6.
In Figure 6, contracting lines are representing the smallest average by considering four
different queries in each model. It has a very small difference of negotiation. A complete
cycle includes the static and dynamic variability and the process that leads to filtration
after the detection of injected SQL queries. Thus, this experimental setup justifies its work
by producing a balance in-between.

Figure 5. Representation of time taken to complete the cycle by n=30 queries

Niharika Singh and Ashutosh Kumar Singh

172 Pertanika J. Sci. & Technol. 27 (1): 159 - 174 (2019)

CONCLUSION

SQLIAs inadequate input validation has been identified as one of the major causes
within a web application. According to a study, it was stated that 75% of cyber-attacks
are outperformed at the application layer and over the audited websites where 97% of
them are clearly targeted. In the paper, the computation experimental performance of the
proposed Valid Security tool solution results to justify the formulation with 70-80% success
in securing the dataset from ‘SQL injections’ injected by attacker belongs to outside the
cloud. We focus to get better information utility rate to get a Moderate/High information
utility than the other research solutions. The solution works over Prevention and Detection
to improve firewall security. Also, the results lead to achieve an IUR percentage range that
would lie between 80-90% that is considered to be a balanced range in all technical aspects.

REFERENCES
Al-Khashab, E., Al-Anzi, F. S., & Salman, A. A. (2011, April). PSIAQOP: preventing SQL injection attacks

based on query optimization process. In Proceedings of the Second Kuwait Conference on e-Services and
e-Systems (p. 10). Kuwait City, Kuwait. doi:10.1145/2107556.2107566

Bandhakavi, S., Bisht, P., Madhusudan, P., & Venkatakrishnan, V. N. (2007, October). CANDID:
preventing sql injection attacks using dynamic candidate evaluations. In Proceedings of the 14th
ACM conference on Computer and communications security (pp. 12-24). Alexandria, Virginia, USA.
doi:10.1145/1315245.1315249

Buja, G., Jalil, K. B. A., Ali, F. B. H. M., & Rahman, T. F. A. (2014, April). Detection model for SQL injection
attack: An approach for preventing a web application from the SQL injection attack. In 2014 IEEE
Symposium on Computer Applications and Industrial Electronics (ISCAIE) (pp. 60-64). Penang, Malaysia.

Casassa-Mont, M., Matteucci, I., Petrocchi, M., & Sbodio, M. L. (2015). Towards safer information sharing in
the cloud. International Journal of Information Security, 14(4), 319-334. doi:10.1007/s10207-014-0258-5

Figure 6. Average negotiation comparison for 4 random queries

Prevention and Detection from SQL Injection Attacks

173Pertanika J. Sci. & Technol. 27 (1): 159 - 174 (2019)

Dharam, R., & Shiva, S. G. (2013, April). Runtime monitors to detect and prevent union query based SQL
injection attacks. In 2013 Tenth International Conference on Information Technology: New Generations
(ITNG) (pp. 357-362). Las Vegas, NV, USA. doi:10.1109/ITNG.2013.57

Eyal, I., Birman, K., & van Renesse, R. (2015, June). Cache serializability: Reducing inconsistency in edge
transactions. In 2015 IEEE 35th International Conference on Distributed Computing Systems (ICDCS)
(pp. 686-695). Columbus, OH, USA. doi:10.1109/ICDCS.2015.75

Halfond, W. G., & Orso, A. (2005, May). Combining static analysis and runtime monitoring to counter SQL-
injection attacks. In ACM SIGSOFT software engineering notes (Vol. 30, No. 4, pp. 1-7). St. Louis,
Missouri. doi:10.1145/1083246.1083250

Kiani, M., Clark, A., & Mohay, G. (2008, March). Evaluation of anomaly based character distribution models
in the detection of SQL injection attacks. In Third International Conference on Availability, Reliability
and Security (ARES 08) (pp. 47-55). Barcelona, Spain. doi:10.1109/ARES.2008.123

Ntagwabira, L., & Kang, S. L. (2010, July). Use of Query Tokenization to detect and prevent SQL Injection
Attacks. In 2010 3rd IEEE International Conference on Computer Science and Information Technology
(ICCSIT) (Vol. 2, pp. 438-440). Chengdu, China. doi:10.1109/ICCSIT.2010.5565202

Narayanan, S. N., Pais, A. R., & Mohandas, R. (2011, August). Detection and prevention of sql injection
attacks using semantic equivalence. In 5th International Conference on Information Processing (ICIP
2011) (pp. 103-112). Bangalore, India.

Oosawa, T., & Matsuda, T. (2014, October). SQL injection attack detection method using the approximation
function of zeta distribution. In 2014 IEEE International Conference on Systems, Man and Cybernetics
(SMC) (pp. 819-824). San Diego, CA, USA. doi:10.1109/SMC.2014.6974012

Ping, C., Jinshuang, W., Lin, P., & Han, Y. (2016, October). Research and implementation of SQL injection
prevention method based on ISR. In 2016 2nd IEEE International Conference on Computer and
Communications (ICCC) (pp. 1153-1156). Chengdu, China. doi:10.1109/CompComm.2016.7924885

Privacy Technical Assistance Center. (2013). Data De-identification: An Overview of Basic Terms. Retrieved
November 15, 2016, from https://studentprivacy.ed.gov/sites/default/files/resource_document/file/
data_deidentification_terms_0.pdf

Plischke, E., Borgonovo, E., & Smith, C. L. (2013). Global sensitivity measures from given data. European
Journal of Operational Research, 226(3), 536-550. doi:10.1016/j.ejor.2012.11.047

Swanson, C. M., & Stinson, D. R. (2015). Extended results on privacy against coalitions of users in user-
private information retrieval protocols. Cryptography and Communications, 7(4), 415-437. doi:10.1007/
s12095-015-0125-x

Soria-Comas, J., Domingo-Ferrer, J., Sánchez, D., & Martínez, S. (2014). Enhancing data utility in differential
privacy via microaggregation-based kk-anonymity. The VLDB Journal—The International Journal on
Very Large Data Bases, 23(5), 771-794. doi:10. 1007/ s00778-014-0351-4

Sonoda, M., Matsuda, T., Koizumi, D., & Hirasawa, S. (2011, November). On automatic detection of
SQL injection attacks by the feature extraction of the single character. In Proceedings of the 4th
international conference on Security of information and networks (pp. 81-86). Sydney, Australia.
doi:10.1145/2070425.2070440

Niharika Singh and Ashutosh Kumar Singh

174 Pertanika J. Sci. & Technol. 27 (1): 159 - 174 (2019)

Uwagbole, S. O., Buchanan, W. J., & Fan, L. (2017, May). Applied machine learning predictive analytics to
SQL injection attack detection and prevention. In 2017 IFIP/IEEE Symposium on Integrated Network
and Service Management (IM) (pp. 1087-1090). Lisbon, Portugal. doi:10.23919/INM.2017.7987433

Yassin, M., Ould-Slimane, H., Talhi, C., & Boucheneb, H. (2017, June). SQLIIDaaS: A SQL injection intrusion
detection framework as a service for SaaS providers. In 2017 IEEE 4th International Conference on Cyber
Security and Cloud Computing (CSCloud) (pp. 163-170). New York, USA. doi:10.1109/CSCloud.2017.27

